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Abstract. We introduce a model for the slow relaxation of an energy landscape caused by its local interac-
tion with a random walker whose motion is dictated by the landscape itself. By choosing relevant measures
of time and potential this self-quenched dynamics can be mapped on to the “True” Self-Avoiding Walk
model. This correspondence reveals that the average distance of the walker at time t from its starting point
is R(t) ∼ log(t)γ , where γ = 2/3 for one dimension and 1/2 for all higher dimensions. Furthermore, the
evolution of the landscape is similar to that in growth models with extremal dynamics.

PACS. 05.40.Fb Random walks and Levy flights – 05.65.+b Self-organized systems – 05.50.+q Lattice
theory and statistics (Ising, Potts, etc.)

1 Introduction

The motion of random walkers in a random environment is
one of the basic problems in the physics of disordered sys-
tems [1–3]. It is known that the effect of the environment
on the walker results in anomalous diffusion in some cases
and logarithmically slow diffusion in others [1,2]. Apart
from their intrinsic interest, these simple models also find
applications in several physical processes, such as the dif-
fusion of electrons in a disordered medium [4] or glassy
activated dynamics [3]. In particular, the Sinai model [2]
has been extensively studied from this point of view. It is
known that for this model, the walker becomes logarith-
mically slow, moving as R(t) ∼ log2(t) where R(t) is the
average distance at time t of a walker from the launching
point. Apart from this, two-time aging dynamics studied
in this model also provide close analogies to glassy phe-
nomenology [3].

In another framework, a “trapping” model ([5] and
references therein) was introduced to provide a simple ex-
ample of the glass transition. A single walker explores a
random landscape of energy traps with e.g. an exponential
distribution, from which it can escape through activated
hops. At low temperatures, it was shown that the sys-
tem cannot reach a steady state due to the unfavorable
competition between the depth of the visited traps and
the time needed to escape from them. The corresponding
slow dynamics, and disappearance of an equilibrium state
was interpreted as a glass transition. In this mean-field
model, introducing an interaction between the walker and
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the random energy landscape was shown to not change
the results [5]. However, the fact that the trapping time
distribution is a power-law provides a natural (statistical)
history dependence. (The dynamics is controlled by the
deepest energy well visited so far.) In the model we intro-
duce here, the walker modifies its environment; aging and
slow dynamics result purely because of this interaction.

Active walker models where the walker and the en-
vironment mutually affect each other have been studied
earlier in different contexts. One such model — the Eule-
rian Walkers Model (EWM) — has been studied [6] within
the framework of self-organized criticality (SOC) [7]. The
“landscape” here is defined by an arrow at each site. The
walker follows the direction of the arrow at its site after
which the direction of the arrow is changed according to
some fixed rules. Besides many correspondences between
the EWM and the Abelian Sandpile Model of SOC [8], it
was also shown that the motion of the walker was sub-
diffusive in two dimensions, i.e. R(t) ∼ t1/3. In one di-
mension, R(t) ∼ t1/2 due to a very simple organization
of the landscape under the rules. For d > 2 it was argued
that the walker is diffusive. Models of mutually interacting
walkers and landscape have also been studied extensively
in the context of pattern formation and biophysical ap-
plications, where the emphasis is on the patterning of the
medium under the influence of multiple walkers [9,10].

The Self-Avoiding Walk (SAW) [11], where the walker
is obliged to avoid its former path, and its modifications,
can also be regarded as active walks in the sense that the
path of the walker in these models is influenced by the
trace it has made. For later purposes it is useful to men-
tion here the so called “True” Self-Avoiding Walk (TSAW)
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where the walker’s probability to go to an already visited
site is a strongly decaying function of the number of visits
to that particular site [12].

The aim of this paper is to study a simple model of an
active walker which exhibits logarithmically slow dynamics
entirely due to the local interaction of the walker with a
self-created random environment – a kind of self-organized
trapping or self-burying effect. Besides the above men-
tioned connections with the physics of glasses, the model
in one dimension may also be regarded as a very simpli-
fied version of a recently introduced model for the slow
dynamics of sheared granular media, where the wander-
ing of shear bands and the related restructuring of the
material was shown to lead to extremely slow relaxation
processes and inhomogeneous aging [13].

2 Definition of the SQW model

Our model is defined as follows. A walker can move on a
hyper-cubic lattice in a d dimensional space with linear
size L and N = Ld number of sites. Periodic boundary
conditions are imposed. A variable si chosen from a uni-
form random distribution [0, 1] is initially assigned to ev-
ery site i on the lattice. We call the site with the walker
the active site.

The only permitted elementary moves for the walker
are to the nearest neighbours. At every time step a new
random number si(t) (uniformly sampled between 0 and
1) is assigned to the active site i. If this random number
is larger than the value of the s variable of all the nearest
neighbours, then the same site remains active. Otherwise,
the activity moves to the neighbouring site with the largest
value of s and the same procedure is repeated. We have
chosen here a uniform distribution for s, however, this
specific form can be shown to play no role in the time
evolution of the active site. In the following we will refer
to this model as a Self-Quenched Walk (SQW).

As time goes on, the average value of s decreases and
as a result, the probability that the activity moves to one
of the neighbours decreases. The definition of the model
is thus quite inconvenient in terms of numerical simula-
tion since intervals when nothing happens grow longer and
longer with time. However, it is easy to circumvent this
difficulty. Let σ be sj , the largest s value amongst the
neighboring sites of the active one, i. For the activity to
move to j, the si value has to be smaller than σ which
is an event with probability σ. Thus the waiting time be-
fore a move is a Poisson process with a characteristic time
τ = 1/σ. Once si < σ, the evolution of the activity is
deterministic. Moreover, the distribution of si when the
activity moves to j is uniform between 0 and σ. There-
fore, we can directly reproduce the evolution of the model
in terms of the number of moves n rather than in time t.
It turns out that the variable n is also more convenient
for the analytical treatment.

Similarly, since the s values quickly evolve towards 0,
as t increases, it is more convenient to use an equivalent
parameterization introducing r ≡ − log(s). The uniform

distribution of s between 0 and σ implies that r is dis-
tributed with a density eρ−r for r > ρ = − log(σ). Al-
ternatively, we note that r − ρ is a random variable ex-
ponentially distributed from 0 to ∞. This reformulation
allows simulations to be carried out over practically un-
limited times without loosing any accuracy. Moreover, as
we will see below, r is the appropriate scale for providing
an accurate description of the long time regime.

Let us thus consider the motion of the activity (the
walker) as a function of the number of moves n, in
a potential V (i, n) (where the value of the potential
V (i, n) = ri(n)). The walker moves to the neighbouring
site with the smaller value of r [since r ≡ − log(s)] after
having changed the value of V on the site it was on.
The above statement can be made more quantitative in
the following two coupled equations of evolution for the
walker and the r-landscape:

dX
dn

= −∇V (X(n), n) + η(n) (1)

∂V (x, n)
∂n

= λδd(x−X(n)) (2)

where 〈η(n)〉 = 0 and 〈η(n)η(n′)〉 = Cδ(n−n′). Here X(n)
is the position of the walker at ‘time’ n.

Equation (1) quantifies the rules of the SQW in any
dimension. When the walker is on a slope, it moves down
towards the valley. When it is in a flat region, it moves
to any of the nearest neighbours with equal probability
(this is the reason for the uncorrelated noise term). Equa-
tion (2) accounts for the increase of the r-landscape at
the position of the walker. In this simplified continuum
description, we have neglected the randomness in the dis-
tribution of the local increments in r, and only retained
the average value λ. However, as we shall see below, all
the essential features of the problem are contained in the
equations.

3 Correspondence with the TSAW model

It turns out that the Langevin equations (Eqs. (1, 2)) of
the SQW in terms of n and r are the same as that of the
TSAW as a function of time and position [12]. The defini-
tion of the TSAW model is the following: The walk takes
place on a d-dimensional hypercubic lattice. At any step
the traveller may move to any of the 2d nearest neighbours
of the lattice site he is at. The probability of stepping to
site i depends on the number of times ni this site has
already been visited and is given by

pj = exp(−gnj)

 2d∑
j=1

exp(−gnj)

−1

, (3)

where the sum runs over all 2d nearest neighbours of the
current position of the walker, and g is a positive param-
eter which measures the intensity with which the walk
avoids itself. Note that the sum over i of pi is equal to 1,
meaning that the traveller never stays at the same site.
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This is similar to the SQW when time is incremented in
units of n.

In the SQW the value of s decreases exponentially on
average since each time the walker visits the site we multi-
ply the s value by a random number taken from a uniform
distribution between 0 and 1. The value of r = − log(s)
thus increases linearly with the number of times the trav-
eller has visited this site.

Further, in the SQW, whenever the walker can move,
it goes deterministically to the neighbouring site with the
higher value of the potential. This is realized by the g →∞
limit of the TSAW model.

The above mapping thus ensures that in the con-
tinuum limit the two models are governed by the same
Langevin equations. The role of the preassigned probabil-
ity (Eq. (3)) in the TSAW is played by the self-organized
evolution of the walker and the potential.

The TSAW has been studied exhaustively by means of
numerical simulations [14,15], Flory theory [16], scaling
analysis [17] and later by exact calculations [18].

The critical dimension of the TSAW problem is dc =
2 above which the mean field solution applies and the
traveller’s asymptotic behavior is not influenced by the
interaction with its former path and performs basically a
Brownian motion. Below two dimensions the trace of the
walker is a fractional Brownian motion. The root mean
square distance from the origin increases as

〈|X(n)−X(n′)|2〉1/2 ∝ |n− n′|ν (4)

with

ν =

{
2/(d+ 2) for d ≤ 2
1/2 for d > 2.

(5)

Thus in one dimension the walker is super-diffusive with a
Hurst exponent of νd=1 = 2/3 which is due to the repulsive
interaction with its former path. This asymptotic behavior
is numerically verified for the SQW in Figure 1.

We can define other related exponents through the
scaling relations: X → bX , n→ bzn and V → bχV , where
χ is the so called roughness exponent of the r landscape
and z is the dynamic exponent. Equations (1) and (2) then
predict the following values for these exponents:

χ = 1/2 z = 3/2 in d = 1
χ = 0 z = d for d ≥ 2.

(6)

We have confirmed the value of χ and z by measuring the
width of the r landscape in our model.

4 Roughness of the potential

The width of a self-affine interface is defined as the root
mean square fluctuation of the interface from its mean
value. In a number of growth models, this width obeys

Fig. 1. The mean square distance from the origin covered by
the walker in the steady state, as a function of the number of
moves n. The dotted line shows power law with exponent 4/3
(upper) and the dashed with an exponent 1 (lower). The curves
are for dimensions 1, 2 and 3 from top to bottom respectively.

the Family-Vicsek scaling [19] with a dynamic exponent z
such that the overall roughness follows

w(n) ∝ Lχϕ
( n
Lz

)
· (7)

Figure 2 shows our numerical determination of the
width of the r landscape for five different system sizes in
one and three dimensions. The collapse with the above
mentioned value of the exponents indicates that the r
landscape is self-affine in one dimension. However, the
growth exponent β describing the roughening of the land-
scape fluctuations for early times (n < n∗ ∼ Lz) as
w ∼ nβ does not obey the Family-Vicsek scaling β = χ/z.
It is instead given by

β = (χ+ 1/2)/(1 + χ), (8)

a formula typical for growth models with extremal dy-
namics [20]. Thus our model, though it does not contain a
global extremum criterion, belongs to the class of extremal
growth models.

The reason why the interface growth (or the r land-
scape evolution) is similar to extremal dynamics is the
following. The activity is a ‘random’ walk trapped by the
maxima of the r-landscape. Before the activity can escape,
the landscape has to be filled. In order to escape from a re-
gion of extent l̃, the number of moves to be made is of the
order of the size of the valley, l̃d, times its typical depth
l̃χ. The growth is pinned everywhere except in the imme-
diate vicinity of the walker. The walker itself is, however,
in a hierarchically ordered valley structure with maxima
of increasing heights. Thus the interface progresses jerk-
ily just as in other extremal growth models. The relation
z = d+χ predicted by equation (2) is also known to occur
in various extremal growth models [21,22].

The correspondence with extremal dynamics does not
hold above dc = 2. This is because above two dimensions,
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(a)

(b)

Fig. 2. a) Average of squared roughness w in one dimension
scaled by Lχ as a function of the number of moves n scaled by
the dynamic exponent Lz. The different curves refer to system
sizes 256*1, 2, 4, 8, 16; each averaged over 1000 realizations.
The slope of the solid line is β = 2/3. b) In 3 dimensions the
steady state value of the width does not depend on the system
size. System sizes 8, 16, 32, 60 were used each averaged over
1000 realizations. The slope of the solid line is β = 1/2.

the walker is no longer trapped by surrounding maxima.
It can also find its way around them instead of over them.
As a result the interface is no longer rough and χ = 0.
However, though the width saturates to a system size-
independent value, the exponent β is non-zero for the fol-
lowing trivial reason. In the random initial state, in n
steps, a number n sites grow by, say, a uniform amount h.
Therefore the width w scales trivially as w ∼ hn1/2L−1/2.
The exponent β is hence equal to 1/2 for all d ≥ 2.

5 Real time behaviour

We now turn to the behaviour of the walker in real time.
In order to understand this, we first note that the mean

Fig. 3. Average of r∗ as a function of the number of moves
n, for a system of size L = 256, L = 32 and L = 16 in 1,
2 and 3 dimensions respectively from top to bottom averaged
over 1000 samples. The solid line shows the a power-law of
exponent 1/3, whereas the dashed lines are the asymptotic
exact increase r∗ = n/N .

value of r in the steady state increases linearly with the
number of moves. Hence the mean increase of r per site
in the steady state is 1/N , where N = Ld is the number
of sites in the system.

We now compute 〈r∗(n)〉 (the r value of the active
site as a function of n) and observe two regimes that we
describe by the scaling assumption:

〈r∗(n)〉 ∝ nαψ
( n
Lz

)
(9)

with ψ(a) ∝ a0 for a � 1 and ψ(a) ∝ a1−α for a � 1.
Therefore, for long times 〈r∗(n)〉 ∝ nL−z(1−α). However,
in the long time regime, r∗ has to increase at the same
rate as the mean velocity of the front 〈r〉, and hence, for
n� Lz, 〈r∗(n)〉 = n/N = nL−d. This imposes

z(1− α) = d or α = 1− d

z
=

χ

d+ χ
(10)

i.e. α = 1/3 for d = 1 and 0 for d ≥ 2 consistently with
our numerics as shown in Figure 3.

Since, in the late stage regime, r∗ increases as n/N ,
s∗ decreases as e−n/N . Therefore the expectation value of
the real time lapse between two consecutive moves t(n)−
t(n− 1) is 1/s∗ or

t(n)− t(n− 1) ≈ en/N (11)

t(n) =
e(n+1)/N − 1

e1/N − 1
∼ Nen/N . (12)

This law refers in fact only to the mean value of t. How-
ever, the distribution of each increment being exponen-
tially distributed (a Poisson process), the central-limit
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Fig. 4. Average of the logarithm of the time as a function of the
number of moves in d = 1, scaled by the system size n/L. The
system size is L = 256 and the average is performed over 1000
samples. The dotted line is a line of slope 1, as theoretically
expected.

theorem applies, and the relative standard deviation of
t with respect to its mean value vanishes. Figure 4 shows
the numerically determined time as a function of the num-
ber of moves n.

The average value of s as a function of time is thus

〈s〉 ∝ exp(−n/N) ∝ exp(− log(t/N)) ∝ N/t (13)

for long times.
Therefore in real time the walker is logarithmically

slow with R(t) ∼ log(t)2/3 in one dimension and R(t) ∼
log(t)1/2 in higher dimensions. The logarithmic depen-
dence of the RMS distance of the walker is just the
consequence of equation (13) as a result of which, the
probability of making a jump to a neighbouring site de-
creases as 1/t. It is thus valid in any dimension. The
value of the exponent of the log in one dimension, is how-
ever a non-trivial consequence of the coupling between the
walker and the medium which induces long-range memory
effects.

6 Conclusion

In summary, we have introduced and studied a simple
model of a walker interacting with its environment. By
choosing the correct measures for describing the time and
the potential, we could map the SQW problem to the
TSAW model and thus use the known exact results in the
latter case, to describe the motion of the SQW walker. In
addition, we have also studied the emerging landscape.
Though the rules for the SQW are entirely local, a rela-
tionship with the so called extremal models could be es-

tablished. The critical dimension is dc = 2 below which the
potential landscape gets self-affine and the walker super-
diffusive in terms of moves. In real time the walker is log-
arithmically slow in any dimension.
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